Kunihiro Ohta Biography [Research Publications]

1962.6 Born in Tokyo

Education
 1981 Graduated Toho Highschool
 1981 Entered The University of Tokyo, Faculty of Arts & Sciences, SII
 1983 The University of Tokyo, Faculty of Science, Dept. of Biophysics and Biochemistry
 1985 Graduated The University of Tokyo, Faculty of Science, Dept. of Biophysics and Biochemistry
 1985 Entered Graduate School of Science, Biophysics and Biochemistry, The University of Tokyo
 1990 Finished Graduate School of Science, Biophysics and Biochemistry, The University of Tokyo

Ph. D (Dr. of Science) 1990

Research
 1989 JSPS special researcher(DC・PD)
 1991 Researcher at RIKEN (The Institute of Physical and Chemical research) 
 2000 PI/ Unit Leader (Chromosome Dymnamics) / Deputy Chief Scientist at RIKEN
 2002 Visiting Associated Prof. (Saitama Univ.)
 2003 PI/ Unit Leader (Genetic Dymnamics) at RIKEN
 2006 Tenured PI/ Associated Chief Scientist of Ohta-Genenetic System Regulation laboratory at RIKEN
 2007 Professor, the University of Tokyo, Dept. of Life Sciences
 2014 Department head of Integrated Sciences (unitl 2015)
 2015 Advisor of President of the University of Tokyo (unitl 2016)
 2016 Vice Dean of the Faculty of Arts and Scences of the University of Tokyo (unitl 2017)
 2017 Deputy Director of Univ. of Tokyo headquaters IR DATA
 2019 The Dean of the Faculty of Arts and Scences of the University of Tokyo (unitl 2021)
 2021 Executive Director/Vice President of the University of Tokyo
 2022 Executive Vice President of the University of Tokyo


 Research Activites March 2018 [Biography]

Research Publication

Hirai H., Takemata N.., Tamura M., *Ohta K.
Facultative heterochromatin formation in rDNA is essential for cell survival during nutritional starvation.
Nucleic Acids Res. (2022) gkac175, https://doi.org/10.1093/nar/gkac175

Yasukawa T., Oda H.A., Namkamura T., Masuo N., Tamura M., Yamazaki T., Imura M., Yamada T., and *Ohta K.
TAQing2.0 for genome reorganization of asexual industrial yeasts by direct protein transfection.
Commun. Biol. 5 , 144 (2022) https://doi.org/10.1038/s42003-022-03093-6

Senmatsu S., Asada R., Oda A., Hoffman CS., Ohta K., *Hirota K.
lncRNA transcription induces meiotic recombination through chromatin remodelling in fission yeast.
Commun. Biol. 4 (1), 295 (2021)

Takamura N, Seo H, *Ohta K.
TET3 dioxygenase modulates gene conversion at the avian immunoglobulin variable region via demethylation of non-CpG sites in pseudogene templates.
Genes Cells. 26 (3), 121-135 (2021) doi: 10.1111/gtc.12828.

Fujiwara Y., Horisawa-Takada Y., Inoue E., Tani N., Shibuya H., Fujimura S., Kariyazono R., Sakata T., Ohta K., Araki K., Okada Y, *Ishiguro K-I.
Meiotic cohesins mediate initial loading of HORMAD1 to the chromosomes and coordinate SC formation during meiotic prophase.
PLoS Genetics ,16 (9), e1009048 (2020)

*Seo H., Masuda H., Asagoshi K., Uchiki T., Kawata S., Sasaki G., Yabuki T., Miyai S., Takahashi N., Hashimoto S., Sawada A., Takaiwa A., Koyama C., Tamai K., Kurosawa K., Lin K-Y., Ohta K., and *Nakazaki Y.
Streamlined human antibody generation and optimization by exploiting designed immunoglobulin loci in a B cell line.
Cellular & Mol. Immunology , https://doi.org/10.1038/s41423-020-0440-9 (2020)

*Tanaka H., Muramoto N., Sugimoto H., Oda A., *Ohta K.
Extended‐TAQing system for large‐scale plant genome reorganization.
The Plant Journal 103: 2139-2150, (2020)

*Yamada T., Yamada S., Ding D-Q., Fujita Y., Takaya E., Hiraoka Y., Murakami H., Ohta K.
Maintenance of meiotic crossover against reduced double-strand break formation in fission yeast lacking histone H2A. Z.
Gene 743: 144615, (2020)

Nakamura T., Harada K., Kamiya T., Takizawa M., K?ppers J., Nakajima K., G?tschow M., Kitaguchi T.,Ohta K., Kato T., *Tsuboi T.
Glutamine-induced signaling pathways via amino acid receptors in enteroendocrine L cell lines.
J. Mol. Endocrinology64: 133-143, (2020)

Kariyazono R, Oda A, Yamada T, *Ohta K.
Conserved HORMA domain-containing protein Hop1 stabilizes interaction between proteins of meiotic DNA break hotspots and chromosome axis.
Nucl. Acids Res. 47: 10166-10180 (2019).

Senmatsu S, Asada R, Abe T, Hoffman CS, Ohta K., *Hirota K.
lncRNA transcriptional initiation induces chromatin remodeling within a limited range in the fission yeast fbp1 promoter.
Sci Rep. 9: 299 (2019). doi: 10.1038/s41598-018-36049-0.

Umeda M., Tsunekawa C., Senmatsu S., Asada R., Abe T., Ohta K., Hoffman CS., *Hirota K.
Histone Chaperone Asf1 Is Required for the Establishment of Repressive Chromatin in Schizosaccharomyces pombe fbp1 Gene Repression.
Mol Cell Biol. 38(18) pii: e00194-18 (2018). doi: 10.1128/MCB.00194-18

Kobayashi-Kirschvink KJ, Nakaoka H., Oda A., Kamei KF., Nosho K., Fukushima H., Kanesaki Y., Yajima S., Masaki H, Ohta K., Wakamoto Y.
Transcriptomes and Raman spectra are linked linearly through a shared low-dimensional subspace.
bioRxiv, doi: https://doi.org/10.1101/235580 (2017)

Okamoto Y, Iwasaki WM, Kugou K, Takahashi KK, Oda A, Sato K, Kobayashi W, Kawai H, Sakasai R, Takaori-Kondo A, Yamamoto T, Kanemaki MT, Taoka M, Isobe T, Kurumizaka H, Innan H, Ohta K., Ishiai M, Takata M.
Replication stress induces accumulation of FANCD2 at central region of large fragile genes.
Nucleic Acids Res., in press (2018)

Yamada S., Kugou K., Ding DQ., Fujita Y., Hiraoka Y., Murakami H., Ohta K., *Yamada T.
The histone variant H2A.Z promotes initiation of meiotic recombination in fission yeast.
Nucleic Acids Res., 46: 609-620 (2018)

Kniewel R., Murakami H., Liu Y., Ito M., Ohta K., Hollingsworth MN., *Keeny S.
Histone H3 threonine 11 phosphorylation is catalyzed directly by the meiosis-specific kinase Mek1 and provides a molecular readout of Mek1 activity in vivo.
Genetics,206: 801-809 (2017) doi: 10.1534/genetics.117.300359.

Tashiro S., Nishikawa Y., Kugou K., Ohta K., *Kanoh J.
Subtelomeres constitute a safeguard for gene expression and chromosome homeostasis.
Nucleic Acids Res., 45: 10333-10349 (2017) Selected as a “Breakthrough paper”.

Teye K., Hashimoto K., Numata S., Ohta K., Haftek M., *Hashimoto T.
Multimerization is required for antigen binding activity of an engineered IgM/IgG chimeric antibody recognizing a skin-related antigen.
Scientific Reports, 7: 8212 (2017)

Asada R., Umeda M., Adachi A., Senmatsu S., Abe T., Iwasaki H., Ohta K., Hoffman C., *Hirota K.
Recruitment and delivery of the fission yeast Rst2 transcription factor via a local genome structure counteracts repression by Tup1-family corepressors.
Nucleic Acids Res., 45: 9361-9371 (2017)

Harada K., Kitaguchi T., Kamiya T., Aung K.H., Nakamura K., Ohta K. and *Tsuboi T.
Lysophosphatidylinositol-induced activation of the cation channel TRPV2 triggers glucagon-like peptide-1 secretion in enteroendocrine L cells.
J. Biol. Chem., 292: 10855-10864(2017)

Adachi A., Senmatsu S., Asada R., Abe T., Hoffman C.S., Ohta K. and *Hirota K.
Interplay between ADCRs and histone acetylation regulates the formation of accessible chromatin in fission yeast fbp1 upstream regulatory region.
Genes & Genetic Systems, in press (2017)

Yamada S., Okamura M., Oda A., Murakami H., Ohta K. and *Yamada T.
Correlation of meiotic DSB formation and transcription initiation around fission yeast recombination hotspots.
Genetics,206: 801-809 (2017)

Ozawa T., Mizuhara T., Arata M., Shimada M., Niimi T., Okada K., Okada Y., and *Ohta K.
Histone deacetylases control module-specific phenotypic plasticity in beetle weapons.
Proc. Natl. Acad. Sci. USA, 113(52): 15042-15047, doi: 10.1073/pnas.1615688114 (2016)

Hashimoto K., Kurosawa K., Murayama A., Seo H., and Ohta K.
B cell-based seamless engineering of antibody Fc domains.
PLoS One 11: e0167232. (2016) doi:10.1371/journal. pone.0167232

Takemata N. and Ohta K.
Role of non-coding RNA transcription around gene regulatory elements in transcription factor recruitment.
RNA Biology20:1-5 (2016)

Hirata Y., Oda A., Ohta K., and Aihara K.
Three-dimensional reconstruction of single-cell chromosome structure using recurrence plots.
Scientific Reports 6: 34982 (2016)

Miki A., Galipon J., Sawai S., Inada T., and Ohta K.
RNA decay systems enhance reciprocal switching of sense and antisense transcripts in response to glucose starvation.
Genes to Cells 21: 1276-1289, doi: 10.1111/gtc.12443 (2016)

Kumakura N., Otsuki H., Ito M., Nomoto M., Tada Y., Ohta K., and Watanabe Y.
Arabidopsis AtRRP44 has ribonuclease activity that is required for cell viability.
Plant Biotechnology 33: 77-85 (2016)

Takemata N, Oda A, Yamada T, Galipon J, Miyoshi T, Suzuki Y, Sugano S, Hoffman CS, Hirota K, Ohta K.
Local potentiation of stress-responsive genes by upstream noncoding transcription.
Nucleic Acids Res. 44:5174-5189 (2016)

Tashiro S, Handa T, Matsuda A, Ban T, Takigawa T, Miyasato K, Ishii K, Kugou K, Ohta K., Hiraoka Y, Masukata H, Kanoh J.
Shugoshin forms a specialized chromatin domain at subtelomeres that regulates transcription and replication timing.
Nature Commun. 7:10393. doi: 10.1038/ncomms10393. (2016)

Mitsumori R., OhashI T., Kugou K., Ichino A., Taniguchi K., Ohta K., Uchida H., Oki M.
Analysis of novel Sir3 binding regions in Saccharomyces cerevisiae.
J. Biochem. 160: 11-17 (2016)

Guy AT, Nagatsuka Y, Ooashi N, Inoue M, Nakata A, Greimel P, Inoue A, Nabetani T, Murayama A, Ohta K., Ito Y, Aoki J, Hirabayashi Y, Kamiguchi H.
Glycerophospholipid regulation of modality-specific sensory axon guidance in the spinal cord.
Science 349:974-977 (2015)

Oda A, Takemata N, Hirata Y, Miyoshi T, Suzuki Y, Sugano S, Ohta K.
Dynamic transition of transcription and chromatin landscape during fission yeast adaptation to glucose starvation.
Genes Cells 20: 392-407 (2015)

Asada R, Takemata N, Hoffman CS, Ohta K., Hirota K.
Antagonistic controls of chromatin and mRNA start site selection by Tup family corepressors and the CCAAT-binding factor.
Mol. Cell. Biol. 35: 847-855 (2015)

Ozawa T., Ohta K., Shimada M., Okada K., and Okada Y.
Environmental factors that affect pupation decision in the horned flour beetle Gnatocerus cornutus
Zool. Sci. 32: 183-187 (2015)

Fawcett JA, Iida T, Takuno S, Sugino RP, Kado T, Kugou K, Mura S, Kobayashi T, Ohta K., Nakayama J, Innan H.
Population genomics of the fission yeast Schizosaccharomyces pombe.
PLoS One 9: e104241 (2014)

Ito M., Kugou K., Fawcett J.A., Mura S., Ikeda S., Innan H., and Ohta K.
Meiotic recombination cold spots in chromosomal cohesion sites
Genes to Cells in press (2014)

Kono H., Tamura M., Osada N., Suzuki H., Abe K., Moriwaki K., Ohta K., and Shiroishi T
Prdm9 polymorphism unveils mouse evolutionary tracks
DNA Research in press (2014)

Yamada T., Ohta K.
Initiation of meiotic recombination in chromatin structure
J. Biochem. 154: 107-114 (2013)

Miyoshi T., Ito M., Ohta K.
Spatiotemporal regulation of meiotic recombination by Liaisonin
Bioarchitecture 3: 20-24 (2013)

Yamada S, Ohta K, Yamada T.
Acetylated Histone H3K9 is associated with meiotic recombination hotspots, and plays a role in recombination redundantly with other factors including the H3K4 methylase Set1 in fission yeast.(selected as a NAR top 5% “Featured Article”)
Nucleic Acids Res. 41: 3504-3517 (2013) doi: 10.1093/nar/gkt049 in press

Galipon J., Miki A., Oda A., Inada T., and Ohta K.
Stress-induced lncRNAs evade nuclear degradation and enter the translational machinery
Genes to Cells (2013) in press

Miyoshi T., Ito M., Kugou K., Yamada S., Furuichi M., Oda A., Yamada T., Hirota K., Masai H., & Ohta K.
A central coupler for recombination initiation linkng chromosome architecture to S phase checkpoint
Molecular Cell 47: 1-12;  doi:10.1016/j.molcell.2012.06.023 (2012)

Kurosawa K. & Ohta K.
Genetic diversification by somatic gene conversion
Genes 2: 48-58; doi:10.3390/genes2010048 (2011)

Morita T., Yamada T., Yamada S., Matsumoto K.,& Ohta K.
The fission yeast ATF/CREB family protein Atf21 plays important roles in production of normal spores
Genes to Cells 16: 217-230 (2011)

Lin W., Kurosawa K., Maruyama A., Kagaya E., & Ohta K.
B cell display-based one-step method to generate chimeric human IgG monoclonal antibodies
Nucl. Acids Res. doi: 10.1093/nar/gkq1122 (2010)

Nemoto N., Udagawa T., Ohira T., Jiang L., Hirota K., Wilkinson C., Bahler J., Jones N., Ohta K., Wek R., Asano K.
The role of stress-activated Sty1 and Gcn2 kinases and proto-oncoprotein homologue Int6/eIF3e in responses to endogenous oxidative stress during histidine starvation
J. Mol. Biol. 404: 183-201 (2010)

Kurosawa K, Lin W, Ohta K.
Distinct roles of HDAC1 and HDAC2 in transcription and recombination at the immunoglobulin loci in the chicken B cell line DT40.
J Biochem. 148:201-207. (2010)

Yoshida T., Shimada K., Oma Y., Kalck V., Akimura K., Taddei A., Iwahashi H., Kugou K., Ohta K., Gasser S.M. & Harata M.
Actin-related Protein Arp6 Influences H2AZ-dependent and -independent Gene Expression and Links Ribosomal Protein Genes to Nuclear Pores
PLoS Genetics, 6(4):e1000910. (2010)

Kugou K., Fukuda T. Yamada S., Ito M., Sasanuma H., Mori S., Katou Y., Itoh T., Matsumoto K., Shibata T., Shirahige K., and Ohta K
Rec8 guides canonical Spo11 distribution along yeast meiotic chromosomes
Mol. Biol. Cell, 20(13): 3064-76 (2009)

Ohuchi T., Seki M., Kugou K., Tada S.,Ohta K., and Enomoto T.
Accumulation of sumoylated Rad52 in checkpoint mutants perturbed in DNA replication
DNA repair, 8: 690-696 (2009)

Hirota K and Ohta K
Cascade transcription of mRNA-type long non-coding RNAs (mlonRNAs) and local chromatin remodeling.
Epigenetics, 4: 5-7 (2009)

Hartsuiker E., Mizuno K., Molna M., Kohli J., Ohta K. and Carr A.M.
Ctp1CtIP and the Rad32Mre11 nuclease activity are required for Rec12Spo11 removal, but this activity is dispensable for other MRN-dependent meiotic functions
Mol. Cell Biol., 29: 1071-1681 (2009)

Yamada K., Hirota K., Mizuno K, Shibata T., and Ohta K
Essential roles of Snf21, a Swi2/Snf2 family chromatin remodeler, in fission yeast mitosis
Genes & Genetic Systems, 83: 361-372 (2008)

Fujino T., Hirota K., Ohta K. and Tahara T.
In-cell viscosity measurement using a fluorescence up-conversion microscope
Chemistry Letters, 37: 1240-1241 (2008)

Hirota K., Miyoshi T., Kugou K., Hoffman C.S., Shibata T., and Ohta K
Stepwise chromatin remodeling by a cascade of transcription initiation of non-coding RNAs
Nature, 456: 130-134 (2008)

Hikiba J., Hirota K., Kagawa W., Ikawa S., Kinebuchi T., Sakane I., Takizawa, Yokoyama S., Mandon-Pepin B., Nicolas A., Shibata S., Ohta K., and Kurumizaka H.
Structural and functional analyses of the DMC1-M200V polymorphism found in the human population
Nucl. Acids Res., 36: 4181-4190 (2008)

Shimada K., Oma Y., Schleker T., Kugou K., Ohta K.., Harata M. and Gasser SM.
Ino80 chromatin remodeling complex promotes recovery of stalled replication forks
Current Biol., 18(8):566-75 (2008)

Akamatsu Y., Murayama Y., Yamada T., Nakazaki T., Tsutsui Y., Ohta K., and Iwasaki H.
Molecular characterization of the Schizosaccharomyces pombe nip1+/ctp1+ gene in DNA double strand break repair in association with the Mre11-Rad50-Nbs1 complex
Mol. Cell Biol., 28(11):3639-51 (2008)

Hirota K., Mizuno K., Shibata T., and Ohta K.
Distinct chromatin modulators regulate to form accessible and repressive chromatin in fission yeast recombination hotspot ade6-M26
Mol. Biol. Cell, 19:1162-1173 (2008)

Kitao H., Kimura M., Yamamoto K., Seo H., Namikoshi K., Agata Y., Ohta K., Takata M.
Regulation of histone H4 acetylation by transcription factor E2A in immunoglobulin gene conversion
Int. Immunol., 20: 277-284 (2008)

Sasanuma H., Hirota K., Fukuda T., Kakusho N., Kugou K., Kawasaki Y., Shibata T., Masai H., Ohta K.
Cdc7-dependent phosphorylation of Mer2 facilitates initiation of yeast meiotic recombination
Genes & Development 3: 255-268 (2008)

Lin W., Hashimoto S., Seo H., Shibata T., Ohta K.
Modulation of immunoglobulin gene conversion frequency and distribution by the histone deacetylase HDAC2 in chicken DT40
Genes to Cells 3: 255-268 (2008)

Fukuda T., Kugou K., Sasanuma H., Shibata T., Ohta K.
Targeted induction of meiotic double-strand breaks reveals chromosomal domain-dependent regulation of Spo11 and interactions among potential sites of meiotic recombination
Nucl. Acids Res. 36: 984-997 (2008)

Hirota K., Steiner W.W., Shibata T., and Ohta K.
Multiple modes of chromatin configuration at natural meiotic recombination hotspots in fission yeast
Euk. Cell, 6: 2072-2080 (2007)

Fukuda T., Ohya Y., Ohta K.
Conditional genomic rearrangement by designed meiotic recombination using VDE (PI-SceI) in yeast.
Mol. Genet. Genomics, 278: 467-478 (2007)

Ogiwara H., Ui, A., Kawashima S., Kugou K., Onoda F., Iwahashi H., Harata M., Ohta K., Enomoto T., Seki M.
Actin-related protein Arp4 functions in kinetochore assembly
Nucl. Acids Res. 35: 3109-3117 (2007)

Kugou K., Sasanuma H., Matsumoto K., Shirahige K., and Ohta K.
Mre11 mediates gene regulation in yeast spore development
Genes & Genetic Systems, 82: 21-33 (2007)

Sasanuma H., Murakami H., Fukuda T., Shibata T., Nicolas A., and Ohta K.
Meiotic association between Spo11 regulated by Rec102, Rec104, and Rec114
Nucl. Acids Res., 35:1119-1133 (2007)

Hirota K., Hoffman C., and Ohta K.
Reciprocal nuclear shuttling of two antagonizing Zn-finger proteins that modulates the Tup-family co-repressors function to repress chromatin remodeling
Eukary Cell 5: 1980-1989. (2006)

Seo H., Hashimoto S., Tsuchiya K., Lin W., Shibata T., and Ohta K.
An ex vivo method for rapid generation of monoclonal antibodies (ADLib system)
Nature Protocols, 1: 1502-1506 (2006)

Branzei D., Sollier J., Liberi G., Maeda D., Seki M., Enomoto T., Ohta K., and Foiani M.
Ubc9 and Mms21 mediated sumoylation counteracts recombinogenic events at damaged replication forks
Cell, 127: 509-522 (2006)

Fukuda T., Ohta K., and Ohya Y.
Investigation of the mechanism of meiotic DNA cleavage by VMA1-derived endonuclease uncovers a meiotic alteration in chromatin structure around the target site.
Eukaryotic Cell, 5: 981-990 (2006)

Ogino K., Hirota K., Matsumoto S., Takeda T., Ohta K., Arai K., and Masai H.
Hsk1 kinase is required for induction of meiotic double-strand DNA breaks without involving checkpoint kinases in fission yeast
Proc. Natl. Acad. Sci. USA, 103: 8131-8136 (2006)

Tokai T., Koshino, H., Kawasaki, T., Igawa,T., Suzuki, Y., Sato, M., Fujimura, M., Eizuka,T., Watanabe, H., Ohta, K., Shibata, T., Kudo, T.,? Inoue, H., Yamaguchi, I., and Kimura, M.
Screening of putative oxygenase genes in the Fusarium graminearum genome sequence database for their role in trichothecene biosynthesis
FEMS Microbiology Letters
, 251: 193-201 (2005)

Seo H., Masuoka M., Murofushi H., Takeda S., Shibata T. & Ohta K.
Rapid generation of specific antibodies by enhanced homologous recombination
Nature Biotech., 23: 731-735 (2005)

Tokai T., Fujimura M., Inoue H., Aoki T., Ohta K., Shibata T., Yamaguchi I., and Kimura M.
Concordant evolution of trichothecene 3-O-acetyltransferase and a rDNA species phylogeny of trichothecene-producing and non-producing fusaria and other ascomycetous fungi
Microbiology, 151: 509-519 (2005)

Davidson M.K., Shandilya H.K., Hirota K., Ohta K., and Wahls W.
Atf・Pcr1・M26 complex links stress-activated MAP kinase and cAMP-dependent protein kinase pathways via chromatin remodeling of cgs2+.
J. Biol. Chem. 279: 50857-50863 (2004)

Yamada T., Mizuno K., Hirota K., Kon N., Wahls W.P., Hartsuiker E., Murofushi H., Shibata T., and Ohta K.
Roles of histone acetylation and chromatin remodeling factor in a meiotic recombination hotspot
EMBO J. 23: 1792-1803 (2004)

Hirota K., Hasemi T., Yamada T., Mizuno K., Hoffman C.S., Shibata T., and Ohta K.
Fission yeast global repressors regulate the specificity of chromatin alteration in response to distinct environmental stresses
Nucleic Acids Research, 32: 855-862 (2004)

Hirota K., Hoffman CS., Shibata T., and Ohta K.
Fission yeast Tup1-like repressors repress chromatin remodeling at the fbp1+ promoter and the ade6-M26 recombination hotspot
Genetics, 165: 505-515 (2003)

Hirota K., Tanaka K., Ohta K., and Yamamoto M.
Gef1p and Scd1p, the two GDP-GTP exchange factors for Cdc42p, form a ring structure that shrinks during cytokinesis in Schizosaccharomyces pombe
Mol. Biol. Cell, 14: 3617-3627 (2003)

Tomita K., Matsuura A., Caspari T., Carr A.M., Akamatsu Y., Iwasaki H., Mizuno K., Ohta K., Uritani M., Ushimaru T., Yoshinaga K., and Ueno M.
Competition between the Rad50 complex and the Ku heterodimer reveals a role for Exo1 in processing double-strand break, but not telomeres
Mol. Cell Biol., 23: 5186-5197 (2003)

Murakami H., Borde V., Shibata T., Lichten M. and Ohta K.
Correlation between premeiotic DNA replication and chromatin transition at yeast recombination initiation sites
Nucleic Acids Research, 31, 4085-4090 (2003)

Seo H., Okuhara K., Kurumizaka H., Yamada T., Shibata T., Ohta K., Akiyama T. and Murofushi H.
Incorporation of DUF/FACT into chromatin enhances the accessibility of nucleosomal DNA
BBRC, 303:8-13 (2003)

Marin A., Gallardo M., Kato Y., Shirahige K., Gutierrez G., Ohta K, and Aguilera A.
Relationship between G+C content, ORF-length and mRNA concentration in Saccharomyces cerevisiae
Yeast, 20: 703-711 (2003)

Pecina A., Smith K. N., Mezard C., Murakami H., Ohta K. & Nicolas A.
Target stimulation of meiotic recombination
Cell, 111: 173-184 (2002)

Farah JA, Hartsuiker E, Mizuno K, Ohta K, Smith GR.
A 160-bp palindrome is a Rad50.Rad32-dependent mitotic recombination hotspot in Schizosaccharomyces pombe.
Genetics 161:461-468. (2002)

Ohta K., and Shibata T.
Hierarchic regulation of recombination
RIKEN Review 41: 28-29 (2001)

Mizuno K., Hasemi T., Ubukata T., Yamada T., Lehmann E., Kohli J., Watanabe Y., Iino Y., Yamamoto M., Fox M. E., Smith G. R., Murofushi H., Shibata T., and Ohta K.
Counteracting regulation of chromatin remodeling at a fission yeast CRE-related recombination hotspot by SAPK, cAMP-dependent kinase, and meiosis regulators
Genetics 159: 1467-1478 (2001)

Smith K. N., Penkner A., Ohta K., Klein F. and Nicolas A.
B-type cyclins CLB5 and CLB6 control the initiation of recombination and synaptonemal complex formation in yeast meiosis.
Curr. Biol. 11: 88-97. (2001)

Fox M.E., Yamada T., Ohta K. and Smith G. R.
A Family of CRE-related DNA Sequences with Meiotic Recombination Hotspot Activity in Schizosaccharomyces pombe
Genetics 156: 59-68 (2000)

Miyajima A, Seki M, Onoda F, Shiratori M, Odagiri N, Ohta K, Kikuchi Y, Ohno Y, Enomoto T.
Sgs1 helicase activity is required for mitotic but apparently not for meiotic functions.
Mol Cell Biol. 20:6399-6409 (2000)

Yamada T., Okuhara K., Iwamatsu A., Seo H., Ohta K., Shibata T., Murofushi H.
p97 ATPase, an ATPase involved in membrane fusion, interacts with DNA unwinding factor (DUF) that functions in DNA replication.
FEBS Lett 466:287-91 (2000)

Ohta K., Wu T.-C., Lichten M., Shibata T.
Competitive inactivation of a double-strand DNA break site involves parallel suppression of meiosis-induced changes in chromatin configuration
Nucl. Acids Res. 27:2175-2180. (1999)

Okuhara K., Ohta K., Shioda M., Yamada T., Seo H., Tanaka Y., Dohmae N., Seyama Y., Shibata T., Murofushi H.
A DNA untwisting factor involved in DNA replication in Xenopus embryo.
Curr. Biol.
9:341-350. (1999)

Furuse M., Nagase Y., Tsubouchi H., Murakami-Murofushi K., Shibata T., Ohta K.
Distinct roles of two separable in vitro activities of yeast Mre11 in mitotic and meiotic recombination
EMBO J. 17:6412-25 (1998)

Ohta K., Nicolas A., Furuse M., Nabetani A., Ogawa H., Shibata T.
Mutations in the MRE11, RAD50, XRS2, and MRE2 genes alter chromatin configuration at meiotic DSB sites in premeiotic and meiotic cells
Proc. Natl. Acad. Sci. U.S.A. 95:646-651 (1998)

Mizuno K., Emura Y., Baur M., Kohli J., Ohta K*., Shibata T.
The meiotic recombination hotspot created by the single base substitution, ade6M26, results in remodeling of chromatin structure in fission yeast.
Genes Dev. 11, 876-886 (1997)* corresponding author

Ohta K., Nicolas A., Keszenman-Pereyra D., Shibata T.
Endo.SK1: an inducible site-specific endonuclease from yeast mitochondria.
Mol. Gen. Genet. 250: 395-404 (1996)

Ohta K., Shibata T., Nicolas A.
Changes in chromatin structure at recombination initiation sites during yeast meiosis.
EMBO J. 13: 5754-5763 (1994)

Matsumoto K., Oishi T., Nakata T., Shibata T., Ohta K.
How can a yeast catalyze enantioselective protonation?
Biocatalysis 9: 97-104 (1994)

Ohta K., Shiina N., Okumura E., Hisanaga S., Kishimoto T., Endo S., Gotoh Y., Nishida E., Sakai H.
Microtubule nucleating activity of centrosomes in cell-free extracts from Xenopus eggs: involvement of phosphorylation and accumulation of pericentriolar material.
J Cell Sci. 104 : 125-37 (1993)

Shiina N., Moriguchi T., Ohta K., Gotoh Y., Nishida E.
Regulation of a major microtubule-associated protein by MPF and MAP kinase.
EMBO J. 11: 3977-84 (1992)

Hoshi M., Ohta K., Gotoh Y., Mori A., Murofushi H., Sakai H., Nishida E.
Mitogen-activated-protein-kinase-catalyzed phosphorylation of microtubule-associated proteins, microtubule-associated protein 2 and microtubule-associated protein 4, induces an alteration in their function.
Eur. J. Biochem. 203: 43-52 (1992)

Sakai H., Ohta K.
Centrosome signalling at mitosis.
Cell Signal. 3: 267-72 (1991)

Gotoh Y., Nishida E., Matsuda S., Shiina N., Kosako H., Shiokawa K., Akiyama T., Ohta K., Sakai H.
In vitro effects on microtubule dynamics of purified Xenopus Mphase-activated MAP kinase.
Nature 349: 251-4 (1991)

Ohta K., Toriyama M., Miyazaki M., Murofushi H., Hosoda S., Endo S., Sakai H.
The mitotic apparatus-associated 51-kDa protein from sea urchin eggs is a GTP-binding protein and is immunologically related to yeast polypeptide elongation factor 1a.
J Biol. Chem. 265: 3240-7 (1990)

Endo S., Toriyama M., Ohta K., Sakai H.
Formation of miniaster in the cytoplasm of hexylene-glycol-treated sea urchin eggs.
Cell Motil. Cytoskele. 15:23-33 (1990)

Sakai H., Ohta K., Toriyama M., Endo S.
Calcium in mitosis: role of 51-kD protein in the centrosome of sea urchin egg in aster formation.
Adv. Exp. Med. Biol.255: 471-80 (1989)

Ohta K., Toriyama M., Endo S., Sakai H.
Mitotic apparatus-associated 51-kD protein in mitosis of sea urchin eggs.
Zool.l Sci. 5: 613-621 (1988)

Maekawa S., Ohta K., Sakai H.
A novel 53kDa actin binding protein from porcine brain-Further biochemical and immunological characterization.
Cell Struct. Funct. 13: 373-385 (1988)

Ohta K., Toriyama M., Hamaguchi S., Maekawa S., Endo S., Sakai H.
Characterization of monoclonal antibodies against the mitotic apparatus associated 51-kD protein and the effect of the microinjection on cell division in sand dollar eggs.
Protoplasma [Supplmentum 1]: 113-121 (1988)

Ohta K., Toriyama M., Endo S., Sakai H.
Localization of mitotic-apparatus-associated 51-kD protein in unfertilized and fertilized sea urchin eggs.
Cell Motil. Cytoskele. 10:496-505 (1988)

Toriyama M., Ohta K., Endo S., Sakai H.
51-kd protein, a component of microtubule-organizing granules in the mitotic apparatus involved in aster formation in vitro.
Cell Motil. Cytoskele. 9:117-128 (1988)

英文総説

Regulation of recombination by chromatin. Yamada T. and Ohta K.
In“DNA Replication, Recombination and Repair”. (eds. Fumio Hanaoka and Kaoru Sugasawa, Springer) 111-129 (2016)

Beneath the Veil of Biological Complexity There Lies Long Noncoding RNA: Diverse Utilization of lncRNA in Yeast Genomes
In “Long Noncoding RNAs: Structures and Functions”
   Kumon T. and Ohta K.
(eds Riki Kurokawa, Springer)(2015)

Initiation of meiotic homologous recombination: Flexibility, Impact of Histone Modifications and Chromatin Remodeling
In “Perspectives on DNA Recombination Szekvolgyi L., Ohta K., and Nicolas A
Cold Spring Harb. Perspect Biol. 7:a016527 (2015)

Chimeric antibodies
In “Human Monoclonal Antibodies: Methods and Protocols"
Kurosawa K., Waka L., and Ohta K.
(eds Michael Steinitz, Springer) (2013)

Analysis of chromatin structure at meiotic DSB sites in yeasts
Hirota K., Fukuda T., Yamada T., and Ohta K.
In Methods in Molecular Biology “Meiosis: Vol 1, Molecular and Genetic Method” (eds Scott Keeney, Springer), in press (2009)

Genome-wide high-resolution chromatin immunoprecipitation of meiotic chromosomal proteins in S. cerevisiae
Kugou K., and Ohta K.
In Methods in Molecular Biology “Meiosis: Vol 1, Molecular and Genetic Method” (eds Scott Keeney, Springer), in press (2009)

Transcription of mRNA-type long non-coding RNAs (mlonRNAs) disrupts chromatin array
Hirota K., and Ohta K.
Communicative & Integrative Biology, in press (2009)

Modulation of immunoglobulin gene conversion in chicken DT40 by enhancing histone acetylation and its application to antibody engineering
Seo H., Yamada T., Hashimoto S., Lin W., and Ohta K.
Biotechnology and Genetic Engineering Reviews (UK), vol. 23, p179-194 (2007)

Mechanisms of regulation of eukaryotic homologous DNA recombination
Shibata T., Mizuno K., Ohta K.
In “Molecular Anatomy of Cellular Systems”, Progress in Biotechnology Vol 22 (Edit. by Endo I., Kudo T., Osada H., Shibata T., Yamaguchi I.) Elsevier, Tokyo (2002)

和文総説・著作   

「生命デザイン学入門 小川(西秋)葉子、太田邦史  岩波ジュニア新書 (2016)   

「Hi-Cという染色体の立体パズルを解く 小田有沙、平田祥人、太田邦史、合原一幸  実験医学別冊 9月号『シングルセル解析 実験ガイド』 (2017)   

「昆虫の形態の多様性とエピゲノム」―子供のころの疑問を明らかに 小澤高嶺、太田邦史 生物の科学 遺伝 71: 314-317 (2017)   

「非コードDNA・インターメアを介したDNA再編成」太田邦史「非コードDNAの機能―ゲノムを支えるインターメアの機能」東京化学同人 143-160 (2015)   

「昆虫の表現型可塑性のエピゲノム制御」小澤高嶺、岡田泰和、太田邦史 昆虫と自然 50:40 (2015)   

「アンチセンス型長鎖ノンコーディングRNAの多様な機能」
 石井智子、太田邦史 細胞工学 34: 28-32 (2015)   

「エピゲノムと老化」太田邦史 細胞46:615-618 (2014)   

「エピゲノム・ダイナミクス」太田邦史 生体の科学 65: 414-415 (2014)

「ADLibシステムによる抗体の進化分子工学」in「進化工学の最前線」
黒澤恒平、橋本講司、瀬尾秀宗、太田邦史エヌ・ティー・エス出版 (2013)

『エピゲノムと生命』
  太田邦史 講談社ブルーバックス (2013)

『理系総合のための生命科学(第3版)』羊土社 編著 (2013)

『キャンベル生物学(第9版)』丸善出版 編著 (2013)   

「長鎖ノンコーディングRNAによる遺伝子発現・クロマチン修飾制御」
竹俣直道、三木敦子、太田邦史 実験医学 in press (2013)

「次世代シークエンサーによる非コードDNA配列解析」
太田邦史、久郷和人、山田真太郎、小田有沙 実験医学 30: 2209-2214 (2012)

「環境応答とエピゲノム」
太田邦史 環境ホルモン学会ニュースレター 14: 6 (2011)

「長鎖ncRNAによるクロマチン・転写活性化の制御」
太田邦史、小田有沙、Josephine Galipon、竹俣直道、三好知一郎、廣田耕志 実験医学29: 1722-1726 (2011)

『自己変革するDNA』
   太田邦史 みすず書房 (2011)

「mlonRNA仮説:ノンコーディングRNA転写による新規クロマチン構造変化機構」
   廣田耕志、太田邦史 化学と生物 47: 296-298 (2009)

「mlonRNA:クロマチン再編成を通じて遺伝子活性化にかかわるノンコーディングRNA」
廣田耕志、太田邦史  蛋白質核酸酵素 54: 735-741 (2009)

「ADLibRシステム」
太田邦史、瀬尾秀宗、橋本修一 分子細胞治療 (2009)

「減数分裂期特異的DNA二重鎖切断機構」in 「染色体サイクル」
笹沼博之、太田邦史  蛋白質核酸酵素増刊号 54: 459-465(2009)

「新しい原理に基づく生体外モノクローナル抗体作製技術:ADLibシステム」
太田邦史 バイオサイエンスとバイオインダストリー 65: 16-20. (2007)

「新しいモノクローナル抗体作製技術-ADLibシステム」
リンワカ、太田邦史 化学と生物 45: 751-753 (2007)

「B細胞ディスプレイによる新しい生体外抗体作製技術:ADLibシステム」
太田邦史 in 「抗体医薬の最前線」CMC出版 (2007)

「ADLibシステムを用いた抗体作成」
太田邦史、瀬尾秀宗 メディカルサイエンスダイジェスト 66:6-7 (2007)

「減数分裂の組換え開始機構」in 「染色体サイクル」 
廣田耕志、福田智行、太田邦史 実験医学 25:160-166 (2007) 羊土社

「ADLibシステムを用いたモノクローナル抗体の迅速作製」
太田邦史、瀬尾秀宗 薬学雑誌 127:81-89 (2007)

「組換え、修復、突然変異」in 「酵母の全て」
福田智行、太田邦史 シュプリンガー・フェアラーク東京 (2007)p237-242

「体細胞DNA複製に重要な役割を果たす分裂酵母Cdc7類似キナーゼ,Hsk1タンパク質は減数分裂期組換えの開始に必要とされる」
荻野桂子,廣田耕志,太田邦史,正井久雄 細胞工学 25 (2006) 秀潤社

「DNA組換えの制御」in「細胞核の世界」
太田邦史、久郷和人 蛋白質核酸酵素増刊号51:2134-2140(2006)

「ADLibシステム~新原理に基づく迅速で自在な抗体作製法」
太田邦史、瀬尾秀宗 バイオテクノロジージャーナル(羊土社) 1-2月号、p77-80 (2006)
細胞生物学実験法 III 細胞解析法IV

「抗体多様化のメカニズムを活用する−ADLibシステム:迅速で自在な抗体作製法−」 
太田邦史、瀬尾秀宗 Bionics 2: 57-63 (2005) オーム社

「減数分裂の機構とその制御」
福田智行、太田邦史 化学と生物 43: 654-661 (2005) 日本農芸学会

受賞

  1. 平成24年度 発明協会・関東地方発明表彰発明協会会長奨励賞
  2. 平成24年度 産学官連携功労者表彰・文部科学大臣賞
  3. 2008年 Genes & Genetic Systems Award (日本遺伝学会論文賞)
  4. 平成19年 文部科学大臣表彰 科学技術賞(研究部門)
  5. 2007年Invitrogen-Nature Biotechnology Award (Venture部門)
  6. Human Frontier Science Program: Long Term Research Grant Awardees

国際会議口頭発表

  1. France-Japan Epigenetics Workshop 2017 (Paris, Nov. 2017)
  2. Naito Conference (Sapporo 27-30, June 2017)
  3. 3R meeting (Matsue, November 13-17, 2016)
  4. 3R meeting (Gotenba, November, 2014)
  5. Gordon Research Conference on “Meiosis” (Colby-Sawyer College, NH, USA, June, 2014)
  6. Chromatin Decoding (Kyoto, May, 2014)
  7. RBC International meeting (Kyoto, 28-29 November, 2013)
  8. EMBO meiosis meeting (Dresden, 14-19 September, 2013)
  9. The 7th fission yeast meeting (London, 24-29 June, 2013)
  10. The 1st Igakuken International Symposium “Chromosome Cycle” (Tokyo, Nov. 2012)
  11. 8th 3R meeting (Awaji, Nov., 2012)
  12. Cold Spring Harbor Meeting on The Dynamic Organization of Nuclear Function (Cold Spring Harbor, Sept., 2012)
  13. EMBO Genetic Stability and Change Workshop (Roscoff, May, 2012)
  14. 7th 3R meeting (Toyama, Oct., 2010)
  15. BioKorea2010 (Soeul, Sept., 2010)
  16. Gordon conference on “Meiosis” (Colby-Sawyer College, NH, USA, June, 2010)
  17. The 19th CDB meeting RNA Sciences in Cell and Developmental Biology (Kobe, May, 2010)
  18. OIST The 4th International Workshop on Cell Regulations in Division and Arrest (Okinawa, November, 2009)
  19. The 5th International Fission Yeast Meeting (Tokyo, 2009)
  20. EMBO workshop “Meiosis” (Avignon, Sept., 2009)
  21. FASEB workshop (Snowmass, USA, August, 2009)
  22. 2nd Switzerland-Japan Meeting on the Molecular Mechanisms Regulating Chromosome Dynamics and Genome Stability (Switzerland, May 2009)
  23. 4th Global COE International Symposium (Tokyo Tech, May 2009)
  24. 6th 3R meeting (Tsumagoi, Oct., 2008)
  25. Gordon conference on “Meiosis” (Colby-Sawyer College, NH, USA, June, 2008)
  26. The 2nd international symposium on the MEXT priority research project: The chromosome cycle (Osaka, Oct., 2007)
  27. EMBO workshop “Meiosis” (Shonan, Sept., 2007)
  28. The 1st international symposium on the MEXT priority research project: The chromosome cycle (Tokyo, Japan, June 2006)
  29. 5th 3R Symposium (Awaji Yumebutai, Japan, November 2005
  30. The International conference on the Biology of yeasts (Bangalore, India, September 2005)
  31. 8th International Conference “Gene and Drug Therapy in Molecular Medicine” (Crete island, Greece, September 2005)
  32. 2nd COE21 International Symposium on Human-Friendly Materials Based on Chemistry: Better Living Through Innovative Biomaterials (Tokyo, November, 2004)
  33. UK-Japan Cell cycle workshop (Nara, Japan, April, 2004)
  34. EMBO workshop on genetic recombination.(Seillac, France, May, 2004)
  35. EMBO-A-IMBN workshop(Tokyo, Japan, March, 2004)
  36. RIKEB-SIBS Joint Symposium on “Molecular Cell Biology” 2003 (Shanghai, China, October, 2003)
  37. FASEB workshop(Snowmass, USA, August, 2003)
  38. International Workshop on Radiation Damage: repair, mutagenesis and visualization (Saitama, Japan, June, 2003)
  39. Riken Conferernce (Nasu, Japan, November, 2002)
  40. Pombe2002 meeting(Kyoto, Japan, March, 2002)
  41. EMBO workshop on genetic recombination.(Seillac, France, May, 2002)
  42. 3rd 3R meeting(Miki, Japan, Nov. 2001)
  43. International Symposium of Bioarchitecht Research(Saitama, Japan, September, 2001)
  44. International Workshop on Radiation Damage: repair, mutagenesis and visualization(Saitama, Japan, September, 2001)
  45. The 1st International Workshop on Dynamics and Algorithms of Chromosome Function(Hiroshima, Japan, November, 2000)
  46. DNA repair, recombination, and mutagenesis (Osaka, Japan, 1999)
  47. International Symposium on Molecular and Cellular Mechanisms of Genetic Recombination. (Osaka, Japan, 1998)
  48. EMBO workshop on genetic recombination. (Seillac, France, 1998.)
  49. Symposium on molecular and cellular mechanisms of genetic recombination (Osaka, Japan, 1998)
  50. Internatinal Workshop on "Molecular Architecture of Biological Systems".(Wako, Japan, 1998)
  51. Germ Cell Development and Meiotic Regulation. 1997 (Hakone, Japan)
  52. FASEB meeting on genetic recombination. (Snowmass, USA, 1997)
  53. NSERM workshop on "V(D)J recombination and other models of DNA repair and mutagenesis". (Aix-les-Bains, France, 1996)
  54. EMBO workshop on genetic recombination. (Seillac, France, 1996)
  55. FASEB meeting on genetic recombination. (Snowmass, USA,1995)
  56. International Workshop on Molecular Anatomy of Biological Sicence (Saitama, Japan, 1994)
  57. EMBO workshop on recombination. (Seillac, France, 1994)
  58. UK-Japan cell-cycle workshop. (Kyoto, Japan, 1991)

特許出願

1. リゾホスファチジルグルコシドに結合する抗体および該抗体を含む組成物
平林義雄、上口裕之、太田邦史、中村晃歩
出願年月日 2010/7/7、特願2010-155278

2. 変異体植物、その製造方法及び遺伝学的組換え頻度を上昇させる方法
太田邦史、大里修一、近藤聡、大音徳、光川典宏、村本伸彦、杉本広樹
出願年月日 2010/1/15、特願2010-007220

3. キメラ抗体の一段階作製方法
太田邦史、Lin Waka
出願年月日 2009/10/19、特願2009-240270

4. 光反応性化合物を有する磁気ビーズへの化合物の固定法 太田邦史、村山晃歩、長田裕之、本田香織 出願年月日 2009/5/13、特願2009-116325

5.抗体遺伝子変異部位の分布状況の調節法
Lin Waka, 太田邦史、 瀬尾秀宗
出願年月日 2006/10/19、特願>2006-284624

6. 組換え開始酵素認識配列の低侵襲染色体導入による減 数分裂期組換え分布の制御法
福田智行、太田邦史
出願年月日 2006/10/12、特願2006-278217

7. リガンドに対し特異的に結合するタンパク質を効率的選別する手法
瀬尾秀宗、太田邦史、柴田武彦
出願年月日2004/11/8、特願2004-324217

8. 耐熱性多頻度DNA切断酵素の細胞内活性化によるゲノム再編成の誘発方法(日本国特許登録 第4158920号)
太田邦史、廣田耕志、瀬尾秀宗、柴田武彦
出願年月日 2004/11/22、特願2004-338029

9. クロマチン再編成因子の機能改変による相同組換えの制御方法(日本国特許登録 第4235908号)
太田邦史、水野健一、柴田武彦
出願年月日 2004/1/15、特願2004-7614

10. 体細胞相同組換えの誘発方法
太田邦史、瀬尾秀宗、柴田武彦
出願年月日 2003/12/22、中国特許登録、国際特許特願PCT/JP03/16496(EU, 中国、米国)

11. 体細胞相同組換えの促進方法及び特異的抗体の作製方法(日本国特許登録4214234号、中国特許登録388445号、米国特許登録7,776,599号、EP特許登録1536004号)
太田邦史、瀬尾秀宗、柴田武彦
出願年月日 2003/07/30、国際特許特願PCT/JP03/09563(EU, 中国、米国)

12. ヒストンアセチル化酵素活性の調節による遺伝子組換え頻度の調節
太田邦史、山田貴富、柴田武彦
出願年月日 2002/11/22、特願2002-339392